

#### ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА



Partner of:





### Q.A.

## Осигуряване на качество на софтуера (2015/2016, редовно)

based on:

Software Quality Management Models: Intro to Process Improvement (PI)

[SEMP Program course, in collaboration with Carnegie Mellon University]

**Dr. George Sharkov** FMI/PU & ESI Center Eastern Europe/Bulgaria <u>www.esicenter.bg</u>

gesha@esicenter.bg

**Dr. Maya Stoeva** FMI/PU

may vast@yahoo.com

ESI Diregioni Software Instituto Contra Espaini Carana

## Оганизация

Лекции:yпражнения = 1:1 (10 седмици, 20+20 часа)

#### <u>Четвъртък</u>

08:15 - 10:00 Аула 2 лекции

10:00 - 11:45 група 26 – 533 к.з.

група 16 – 532 к.з.

11:45 - 13:30 група 2а - 547 к.з.

група 1а - 532 к.з.

Групи, екипи (проекти) + отговорници Координация

Students quarter – 15 minutes



www.esicenter.bg

## Информация, източници:

www.esicenter.bg >> general info and in "Resources"

links to CMMI models

http://cmmiinstitute.com/cmmi-solutions/

http://www.sei.cmu.edu/cmmi/tools/index.cfm

CMMI -DEV v 1.3 model (CMMI Institute, and SEI, Carnegie Mellon University)

http://cmmiinstitute.com/resource/cmmi-for-development-version-1-3/

www.sei.cmu.edu/reports/10tr033.pdf

General
<a href="mailto:www.sei.cmu.edu">www.sei.cmu.edu</a>
<a href="www.cmmiinstitute.com">www.cmmiinstitute.com</a>

www.esicenter.ba







### About

#### SEMP: SOFTWARE ENGINEERING MANAGEMENT PROGRAM

The course is developed (and compiled) jointly by ESI Center (Eastern Europe) and CMU from the main lines and materials for SEMP, in partnership with SEI/CMU.

It introduces students to process improvement as a main factor for the quality of products and services.

Based on process-oriented models - CMMI, the "industrial" standard developed by SEI/CMU, project management (PMI/PM BOK), personal/team management (PSP/TSP BOK), strategic planning (Balanced ScoreCards), information security.

Augmented by modern methods and techniques – Agile CMMI, Six Sigma, etc. Mapping between main industrial models and standards. Implementation. Models for quality improvement in small settings and SMEs. Business aspects – cost of quality, what is "the right model for my company", why invest in PI, what is the return, who can help.



## Съдържание (модули)

- 1 Увод в управление на качеството. Компоненти и цена на качеството. Процеси. Преглед на моделите за управление на качеството и подобряване на процесите. Методи за оценка на зрелостта на ИТ-интензивни и софтуерни организации. Стратегически карти/Балансирана система от показатели (balanced ScoreCards).
- 2 Модел СММІ (ver 1.3). История, внедряващи организации. Обща структура. Процесни области. Генерични и специфични цели и практики. Презентации Maturity/Capability нива на Continuous и Staged representations. Категории процесни области: Process Management, Project Management, Engineering, Support.
- 3 |Процесни области от ниво 2 на CMMI. Детайлно представяне на:

REQM - Requirements Management

PP - Project Planning

MA - Measurement and Analysis

PPQA - Process and Product Quality Assurance

CM – Configuration Management

PMC - Project Monitoring and Control

Преглед на:SAM-Supplier Agreement Management

4 Процесни области от ниво 3 на СММІ. Детайлно представяне на:

RD – Requirements Development

VAL - Validation

VER - Verification

RSKM - Risk Management

TS - Technical Solution

Преглед на: DAR - Decision Analysis and Resolution , IPM - Integrated Project Management , OPD - Organizational Process Definition , OPF - Organizational Process Focus, OT - Organizational Training , PI - Product Integration

Organizational Frocess Focus, OT - Organizational Training, FT - Froduct integration

Преглед на Maturity Level 4 и 5.

#### Обобщение на връзките между процесните области: Tying all together

- 5 Внедряване на програма за подобряване на процесите на база СММІ. Адаптирани подходи Agile CMMI, CMMI/ISO. Нови модели СММІ CMMI for Services, CMMI for Acquisition. Оценка (SCAMPI), роли.
- Подобряване на процесите в малки фирми IT Mark. Компненти на зрелостта бизнес, организация/процеси, информационна сигурност. Оценка на нивото и план за подобрения.

ESI Siriwani Instituto Cumar bessarin durapa

www.esicenter.bg compete by excellence

www.esicenter.bg

compete by excellence

www.esicenter.bg

## **Practical Exercises**

#### **Objective 1: remember-understand-apply**

- SW project/product lifecycle
- 2. Cost of Quality
- 3. Process policy and definitions (samples REQM, PP, CM)
- 4. Project Planning, Estimates, PMC
- 5. (optional) VER/VAL Peer Review

#### **Objective 2:analyze-evaluate**

- Presentations (team work exercise)
- 2. (optional) Kanban team/project game wokrshop
- 3. Case study (+ presentation)
- 4. Real project (team work) RD, TS, PP (?)

#### **Objective 3: create**

- 1. Elevator Pitch (perform)
- Students quarter (15 minutes "free mind")



Why are you here?



www.esicenter.bg

## Part 1: Introduction

Увод в управление на качеството. Компоненти и цена на качеството. Процеси. Преглед на моделите за управление на качеството и подобряване на процесите. Методи за оценка на зрелостта на ИТ-интензивни и софтуерни организации. Стратегически карти/Балансирана система от показатели (balanced ScoreCards).



www.esicenter.ba

## **European Software Institute**









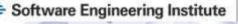






- Non-profit member-based Foundation
- Founded in 1993 by the European Commission and the Basque Government
- Established in Zamudio, near Bilbao, Spain




www.esicenter.bg compete by excellence www.esicenter.bg compete by excellence www.esicenter.bg compete by

## Who are we?



Since 1993

partner of:



Carnegie Mellon Center Bulgaria Sofia, Bulgaria

Bilbao, Spain

ESI US, Inc. West Virginia, U.S.A.

ESICenter Mexico Guadalajara, Mexico ESICenter SECC Cairo, Egypt

Helping companies and organizations compete

by QUALITY and EXCELLENCE since 2003

Affordable "BIG" standards for "small" companies



ESI@net Partners



**Since 2003** 

#### **ESI Center Eastern Europe**

PPP: SW Industry(BASSCOM), ESI & State ICT agency, supported by: USAID, UNDP



SEI Partner | Carnegie Mellon





er SSEAC

ESICenter Australia Melbourne, Australia

ii, China





### **CERT | Software Engineering Institute | Carnegie Mellon**



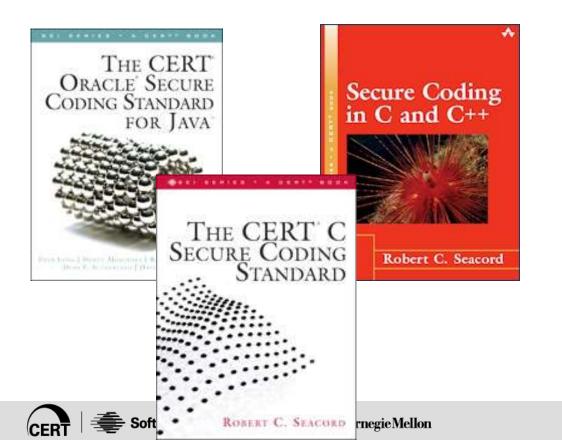
## Carnegie University

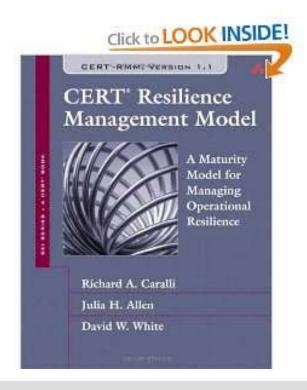
#### **Software Engineering Institute (SEI)**

- Federally funded research and development center based at Carnegie Mellon University
- Basic and applied research in partnership with government and private organizations
- Helps organizations improve development, operation, and management of software-intensive and networked systems

### CERT – Anticipating and solving our nation's cybersecurity challenges

- Largest technical program at SEI
- Focused on internet security, digital investigation, secure systems, insider threat, operational resilience, vulnerability analysis, network situational awareness, and coordinated response





## Also from SEI: **Computer Emergency Response Team**



Closing gaps & develop good code: Secure Coding Standards [languages + compilers]

**Generic Model to** Manage and Assess the Operational Resilience
[Information Security, Security
Business Continuity]





small or BIG

business depends on excellence



### What is excellence?

Corporate Excellence is a feature of an organizational entity that manifests how incomparably excellent it is when assessed adhering to success criteria (ISO, CMMI, 6 Sigma etc.); excellence refers always to excellent performance concerning the best methodologies in the world and it manifests in official certification according to them.



compete by

## Corporate excellence perspectives

#### Corporate excellence is a balanced model

#### Kaplan and Norton structured it in four perspectives:

- Financial perspective
- Customers perspective
- Processes perspective
- Learning perspective



### Excellence is in:

repeating the success

turn it to sustainable growth

make the best with your people

for higher profit



## So what is the Balanced Scorecard?

The Balanced Scorecard is a framework for translating a vision into a strategy by focusing on shareholder, customer, internal and learning requirements which collectively describe the strategy of an organisation and how that strategy can be achieved.

#### **Financial Perspective**

"If we succeed, how will we look to our shareholders?"



#### Cu

#### **Customer Perspective**

"To achieve our vision, how must we look to our customers?"





#### **Process Perspective**

"To satisfy our customers' value proposition, what must excel at?"





#### **Growth Perspective**

"If we are to succeed, what must we do to learn and improve?"

Kaplan & Norton Harvard Business Review ,1992 "The Balanced Scorecard - Measures that Drive Performance"



## Financial Perspective

Results-oriented perspective that covers goals and performance measures related to the financial performance of the company.

Typical indicators: Return on Investment (ROI), Shareholder Value, Increase of Revenue, Increase of Turnover, Cash Flow, etc.



## Customer Perspective

Related to the market and customer segments and it directly supports the implementation of financial objective.

Typical indicators are: market segments, customer satisfaction, percentage of new customers, life cycle, quality, service, price - quality, delivery times, reputation, commitment to delivery times



## **Process Perspective**

Defines and measures the processes, in which the company should invest and improve so that it can attain the goals in the customer and finance related perspectives.

Typical indicators: Processing time, % millstones met, process frequency, process costs, process quality, time to market, innovation cycle etc.



## Learning and Growth Perspective

Structuring goals and performance measures related to the knowledge necessary for maintenance and further development of all perspectives.

Typical indicators: market innovation, intellectual competences, staff satisfaction, fluctuation, staff productivity, number of improvement proposals, quality of improvement proposals, training days, etc.



compete by

## Corporate excellence – FINANCIAL

## The RESULT produced by the corporate excellence is high profitability

- The major goal of the companies is to produce profit for their shareholders rather than have the "ideal company"
- Corporate excellence is a tool for sustainable financial  $\bigcirc$ results
- The key social impacts of corporate excellence are higher employment and increased fiscal stability



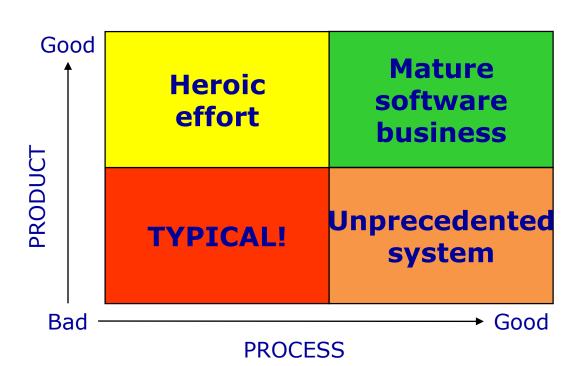
## Corporate excellence – **CUSTOMERS**

## The corporate excellence is CERTIFIED by the customers

Understanding, predicting and managing the customers expectations are critical:

```
creativity and efficiency
low cost
                      <->
```

complex solution coding <->


outsourcing partnership with the clients <->

"coopetition" competition <->



## Corporate excellence – INTERNAL

## The corporate excellence is BASED on good internal processes



"The quality of a product is largely determined by the quality of the process that is used to develop and maintain it."

Based on TQM principles as taught by Shewhart, Juran, Deming and Humphrey.



## Corporate excellence -LEARNING

## The corporate excellence is **EMPOWERED** by learning and innovations

- Motivated and qualified human resources
- Knowledge management
- Organizational learning



## Focus on the processes



# The company inside: Why should a manager care about the software process?

"It's very difficult to consistently deliver quality products to your customers, while also making a profit, if your development process is poor."

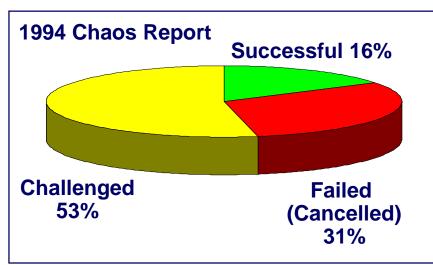


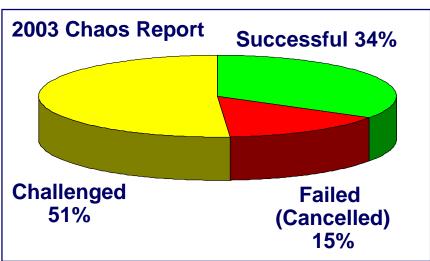
www.esicenter.bg

### The sad truth

25% of all software projects are killed.

Companies are releasing products to their customers with 15% of the defects remaining in the product.


Many companies are spending 30-44% of their time and money on reworking software they have already written.


Companies meet their schedules only 50% of the time.

Sources: Capers Jones and Bill Curtis



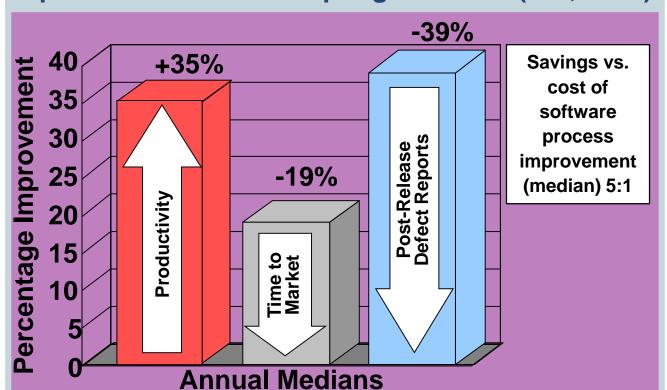
## We're getting better, but ...





- Project waste has dropped from 32% to 21.5% of project spending
- Cost overruns have dropped from 180% to 43%
- Project waste of \$55 billion against \$255 billion in project spending
- For every 100 project starts, there are 94 restarts
- 52% of required features and functions make it to the released product
- Projects cost, on average, 143% of the original estimate and 82% have schedule overruns

| Definitions                                                 |                                                |  |  |  |
|-------------------------------------------------------------|------------------------------------------------|--|--|--|
| Successful                                                  | on time, on budget, promised functionality     |  |  |  |
| Challenged late, over budget and / or missing functionality |                                                |  |  |  |
| Failed                                                      | Severely impaired projects; cancelled projects |  |  |  |


Source: Standish Group Chaos Report - 2003 compete by excellence



compete by excellence

## Things are Looking Brighter





Current ROI Value to Programs (DACS, 1999)

| Development<br>Costs        | Reduced | 73%  |
|-----------------------------|---------|------|
| Rework Costs                | Reduced | 96%  |
| Average<br>Schedule Length  | Reduced | 37%  |
| Post-Release<br>Defects     | Reduced | 80%  |
| Weighted Risk<br>Likelihood | Reduced | 92%  |
| Return On<br>Investment     |         | 21:1 |

#### Expect Even Higher ROI For CMMI



## You can only do 3 things

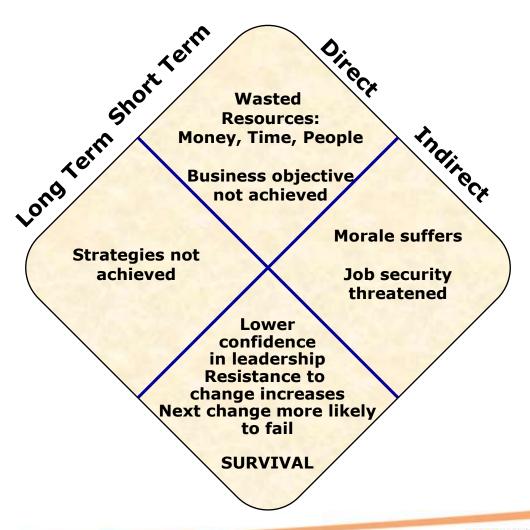


Work harder

Hire better people

Invest in improving the processes that you use to do your job




## Cost of implementation failure

Quality is NOT Free...

Cost of conformance

...but quality is cheaper than the alternatives

Cost of nonconformance





## Cost of Quality (CoQ)

Crosby describes Cost of Nonconformance as the extra cost incurred because a product or service wasn't done right the first time.

Cost Categories

Cost of Nonconformance

Cost of Conformance

Cost of Quality

**Internal Failures** + External Failures

> Prevention + Appraisal



## **EXERCISE - Cost of Quality**

| Prevention                               | Appraisal                                   | Internal Failure                                                      | External Failure                                                                |  |  |  |
|------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| Costs associated with preventing defects | Costs associated with "looking" for defects | Costs associated with defects found prior to implementation / release | Costs associated with defects found after the product is implemented / released |  |  |  |
|                                          | 1                                           |                                                                       |                                                                                 |  |  |  |

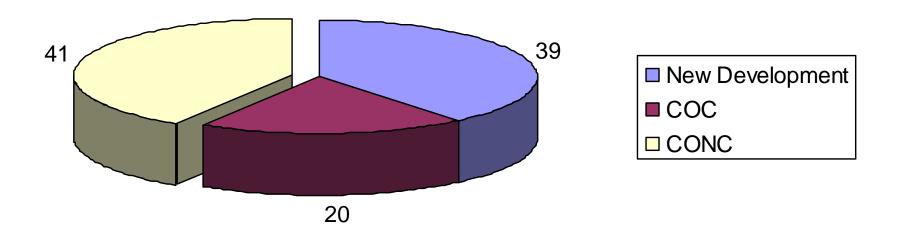


www.esicenter.bg

## CoQ Cost Categories (exercise)

| Prevention                                                                                                                                                             | Appraisal                                                                                                                                                                     | Internal Failure                                                                                                                                                                                                                                                          | External Failure                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Costs associated with preventing defects                                                                                                                               | Costs associated with "looking" for defects                                                                                                                                   | Costs associated with defects found prior to                                                                                                                                                                                                                              | Costs associated with defects found after the                                                                                                                     |
| Planning Documentation Training Tools Policies and procedures Quality improvement projects Data gathering and analysis Fault and root cause analysis Quality reporting | Reviews  • System  • Requirements  • Design  • Test Plan  • Test Script  Walkthroughs and code inspections  • Testing (First-time)  Audits  CMM Assessments  • Class A,, B, C | <ul> <li>implementation / release</li> <li>Rework</li> <li>Requirements</li> <li>Design</li> <li>Code</li> <li>Documentation</li> <li>Defect re-testing</li> <li>Process losses (testing downtime, changing deliverables, schedule slips, cost overruns, etc.)</li> </ul> | product is implemented / released  Warranties  Complaint adjustments  Lost projects  Tech support  Subsequent releases, patches, "Service Packs" (MS terminology) |




## An Early CoSQ Experience



Where are software engineers spending their time?

OR

Where are we spending our software engineering budget?



Source: Raytheon Electronic Systems Experience in Software Process Improvement, CMU/SEI-95-TR-017, November 1995



# Successful software process improvement programs can

reduce the number of defects delivered to customers by 95%

reduce software development schedules by 71%

increase productivity (measured in lines-of-code or function points per day) by 222%

realized an average ROI of 5:1

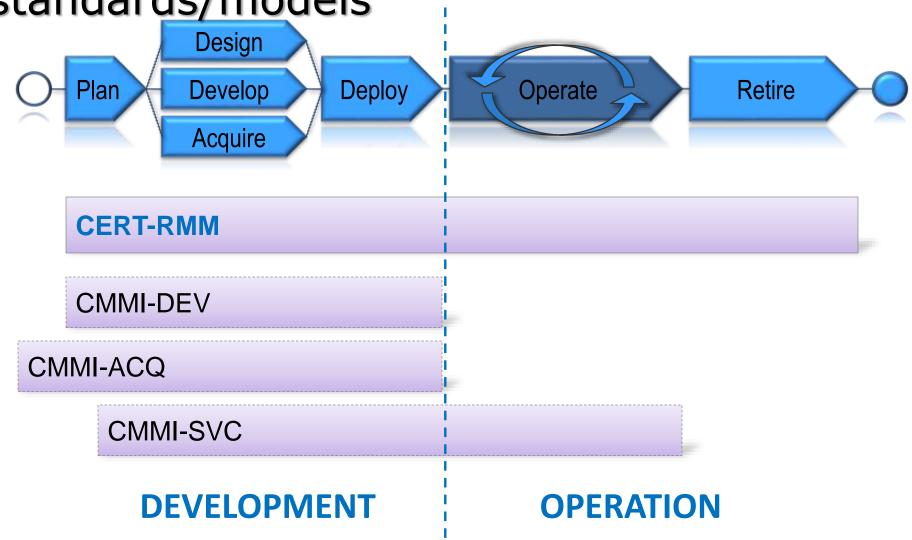
Sources: Capers Jones and Software Engineering Institute



## Why Focus on Process?

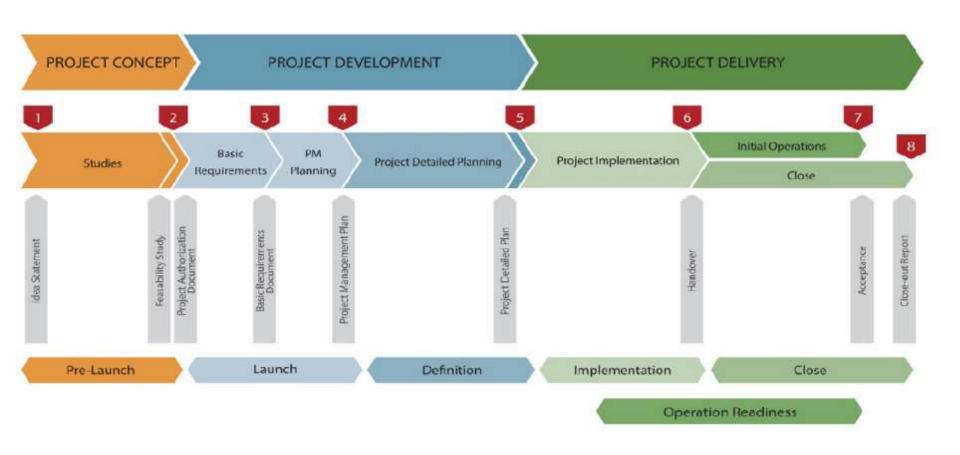
Process provides a constructive, high-leverage focus...

#### ... as opposed to a focus on people


- Your work force, on the average, is as "good" as it is trained to be.
- Working harder is not the answer.
- Working smarter, through process, is the answer.

#### ... as opposed to a focus on technology

- Technology applied without a suitable roadmap will not result in significant payoff.
- Technology provides the most benefit in the context of an appropriate process roadmap.



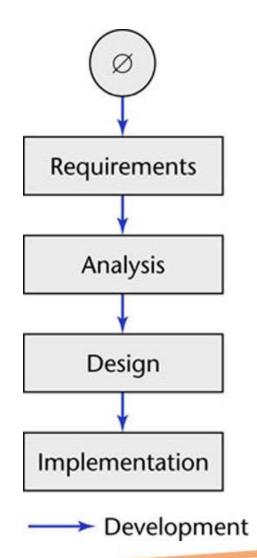

SW life cycle, software (quality) assurance standards/models





## SW Project life cycle






www.esicenter.bg compete by excellence www.esicenter.bg compete by excellence www.esicenter.bg compete by

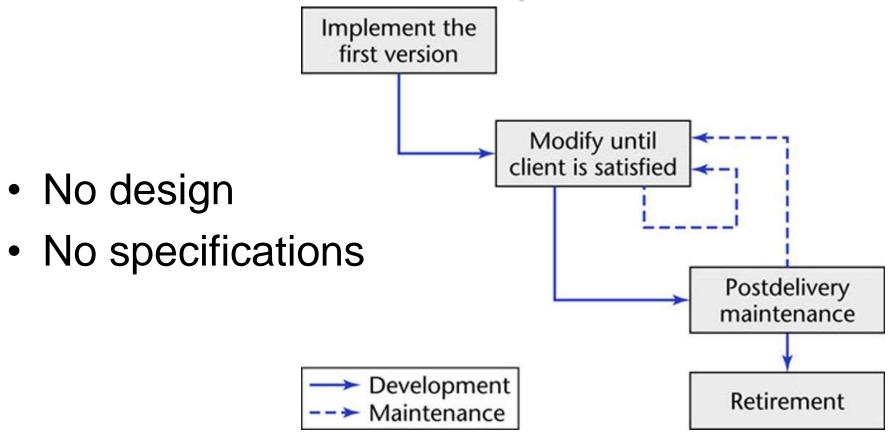
## Software Development in Theory

Ideally, software is developed:

- Linear
- Starting from scratch






## Software Development in Practice

In the real world, software development is totally different and is more chaotic

- Software professionals make mistakes
- The client's requirements change while the software product is being developed
- A software product is a model of the real world, and the real world is continually changing.



## Code-and-Fix Life-Cycle Model



The easiest way to develop software The most expensive way for maintenance (i.e., maintenance nightmare)

compete by

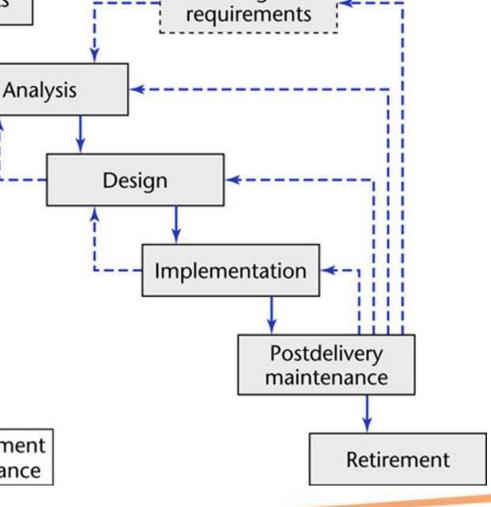
## Code-and-Fix Life-Cycle Model (Cont.)

The product is implemented without requirements or specifications, or any attempt at design.

The developers simply throw code together and rework it as many times as necessary to satisfy the client.

It is used in small project and is totally unsatisfactory for products of any reasonable size.




## Waterfall Life-Cycle Model

Requirements

 The linear life cycle model with feedback loops

> The waterfall model cannot show the order of events

> > → Development
> > --> Maintenance



compete by

Changed



# Waterfall Life-Cycle Model (Cont.)

No phase is complete until the documentation for that phase has been completed and the products of that phase have been approved by the software quality assurance (SQA) group.

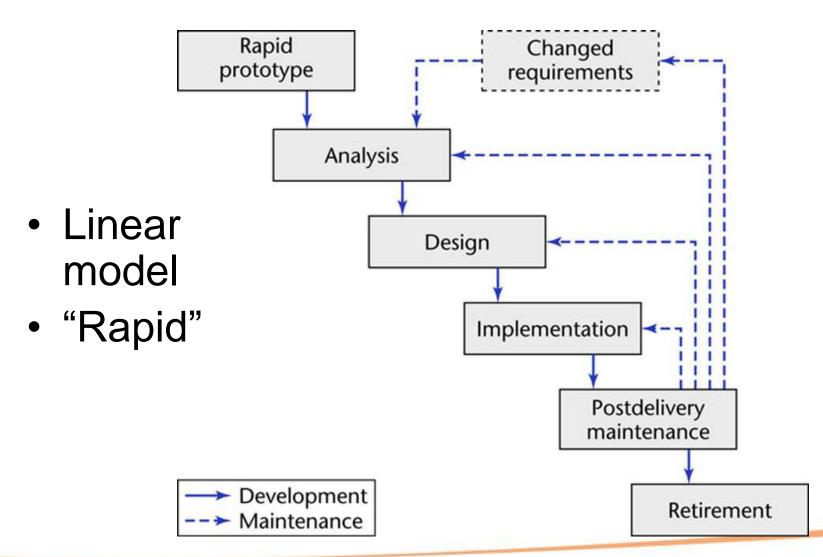
If the products of an earlier phase have to be changed as a consequence of following a **feedback loop**, that earlier phase is deemed to be complete only when the documentation for the phase has been modified and the modifications have been checked by the SQA group.



# Waterfall Life-Cycle Model (Cont.)

### Advantages:

- Documentation is provided at each phase
- All the products of each phase (including the documentation) are meticulously checked by SQA. → Maintenance is easier


### Disadvantages:

 Specification documents are long, detailed, and boring to read.



compete by

## Rapid-Prototyping Life-Cycle Model





www.esicenter.bg

www.esicenter.bg

# Rapid-Prototyping Life-Cycle Model (Cont.)

A rapid prototype is a working model that is functionally equivalent to a subset of the product.

The first step is to build a rapid prototype and let the client and future users interact and experiment with the rapid prototype.

### Strength:

- The development of the product is essentially linear, proceeding from the rapid prototype to the delivered product.
- The feedback loops of the waterfall model are less likely to be needed in the rapid prototyping model.
- It is built rapidly and modified rapidly to reflect the client's needs.  $\rightarrow$  Speed is of the essence.



# Rapid-Prototyping Life-Cycle Model (Cont.)

### Weakness:

 One the client's real needs have been determined, the rapid prototype implementation is discarded.

The lessons learned from the rapid prototype implementation are retained and used in subsequent development phases.



## Mini Case Study

**Episode 1**: The first version is implemented

### **Episode 2:** A fault is found

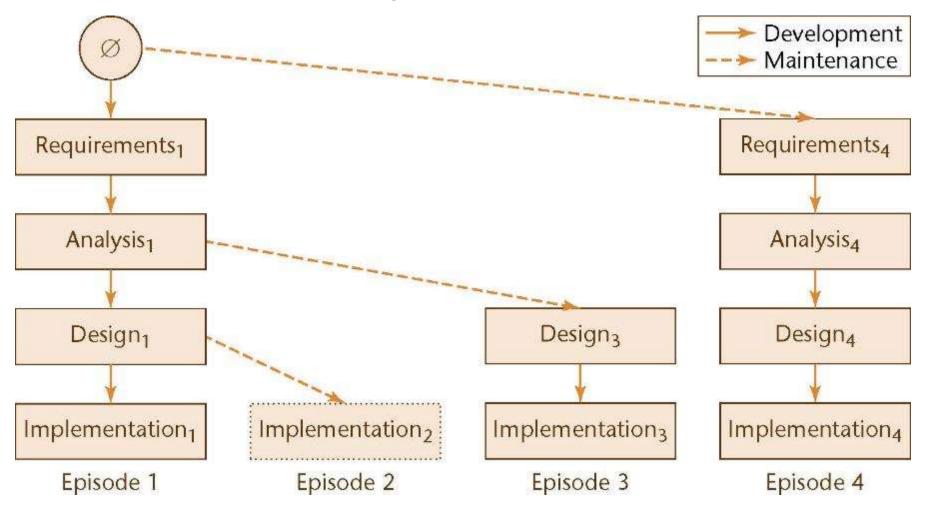
- The product is too slow because of an implementation fault
- Changes to the implementation are begun

### **Episode 3:** The requirements change

A faster algorithm is used

## **Episode 4:** A new design is adopted

Development is complete


www.esicenter.bg

**Epilogue:** A few years later, these problems



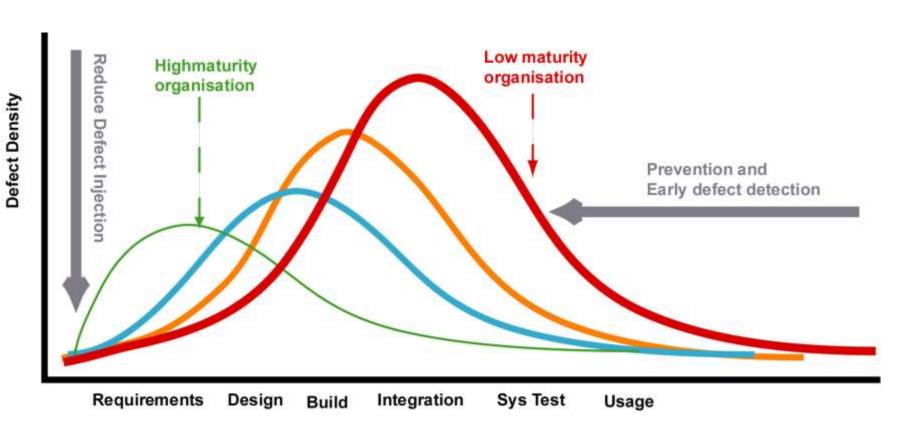
# Evolution-Tree Life-Cycle Model

The model for Winburg Mini Case Study





www.esicenter.bg


# Defects: Insertion Pattern & Cost of Removal

|                              | Require- | Design | Code | Software | System | Field |
|------------------------------|----------|--------|------|----------|--------|-------|
|                              | ments    |        |      | Test     | Test   | Use   |
| Where Defects are Introduced | 10%      | 40%    | 50%  |          |        |       |
| Relative Cost to             | \$1      | \$1    | \$1  | \$6      | \$12   | \$100 |

Source: SEPG Asia Pacific 2009 presented by Ravindra Nath, KUGLER MAAG CIE GmbH



# Defects-2: Injection & Prevention

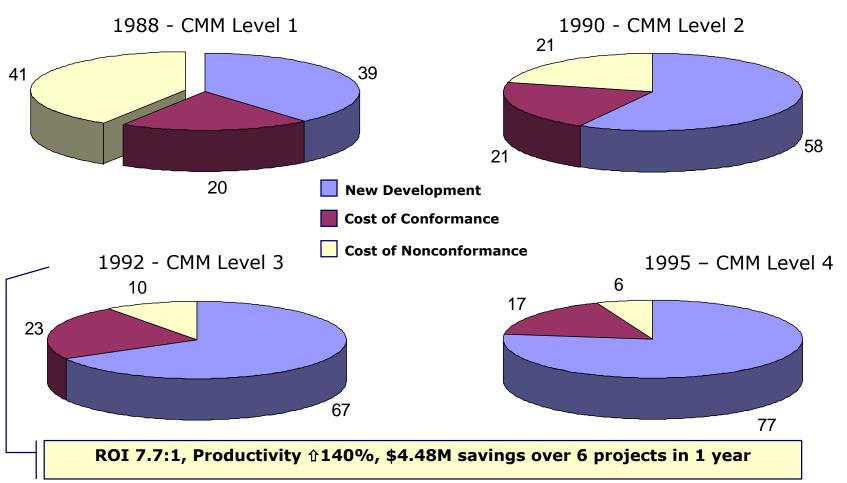


Source: Six Sigma and DFSS for IT and Software Engineering Position Paper

Radouane Oudrhiri, CTO, Systonomy Limited

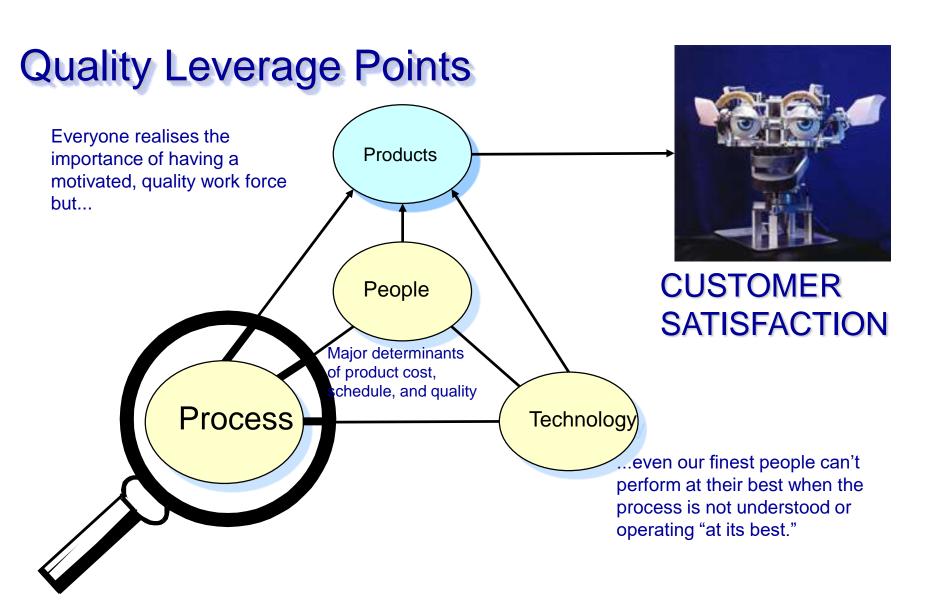
ESI Seri-wai Inschieb

## This is also about SW Quality?




SELECT name FROM users WHERE name=" OR "=" AND passwd= " OR "="




www.esicenter.bg compete by excellence www.esicenter.bg compete by excellence www.esicenter.bg compete by

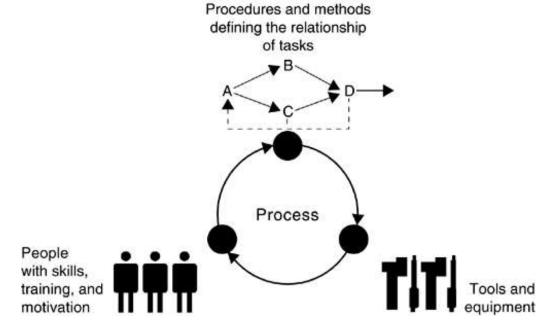
# The shift to increased profitability



Source: Raytheon Electronic Systems Experience in Software Process Improvement, CMU/SEI-95-TR-017, November 1995

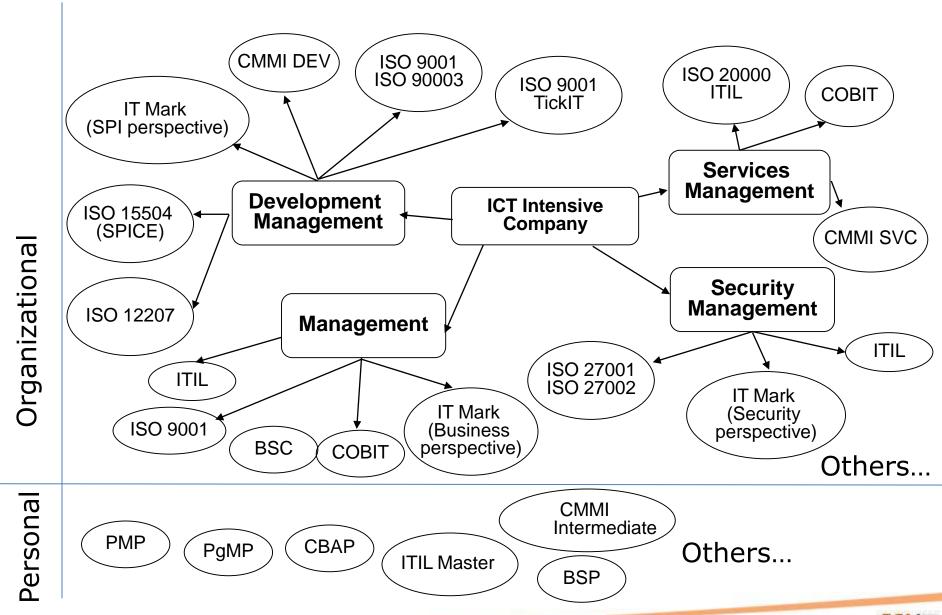







www.esicenter.bg compete by excellence

## Why using models?


"All models are wrong, but some are useful."

George Box





## So many models and standards...





## Process # Bureaucracy

Process = Work



### Part 2: CMMI model

Модел CMMI (ver 1.3). История, внедряващи организации. Обща структура. Процесни области. Генерични и специфични цели и практики. Презентации – Maturity/Capability нива на Continuous и Staged representations. Категории процесни области: Process Management, Project Management, Engineering, Support.



compete by

www.esicenter.bg



### CMMI = Capability Maturity Model Integration

links to all CMMI models (DEV, SVC, ACQ, PCMM)

http://cmmiinstitute.com/cmmi-solutions/

http://www.sei.cmu.edu/cmmi/tools/index.cfm

CMMI –DEV v 1.3 model (CMMI Institute, and SEI, Carnegie Mellon University)

<u>http://cmmiinstitute.com/resource/cmmi-for-development-version-1-3/</u>

www.sei.cmu.edu/reports/10tr033.pdf



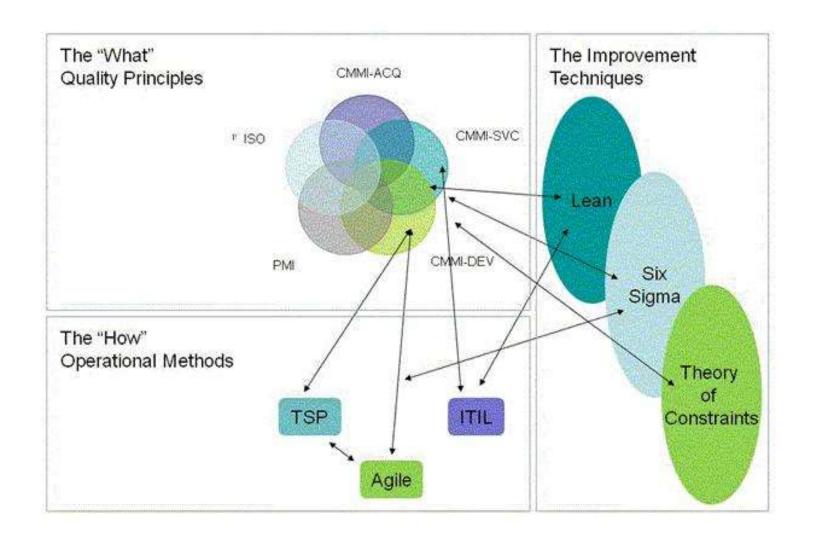
## What is a Capability Maturity Model?

### Capability Maturity Model:

A reference model of mature practices in a specified discipline, used to assess a group's capability to perform that discipline

### CMMs differ by

- Discipline (software, systems, acquisition, etc.)
- Structure (staged versus continuous)
- **How Maturity is Defined (process** improvement path)
- **How Capability is Defined** (institutionalisation)


"Capability Maturity Model®" and CMM® are used by the Software Engineering Institute (SEI) to denote a particular class of maturity models





www.esicenter.bg compete by excellence www.esicenter.bg compete by excellence www.esicenter.bg compete by

### CMMI and other models





## CMMI (SEI/CMU) – reference model de facto industrial standard CMMI DEV, CMMI ACQ, CMMI SVC

Focus on process improvement

#### **Optimizing**

Measurably increased process capabilities

Process measured and controlled

#### **Quantitatively Managed**

Use of statistical and other quantitative techniques in managing the processes and results

Process characterized for the organization and is proactive

#### **Defined**

Commonality among projects allows more uniform estimation of performance.

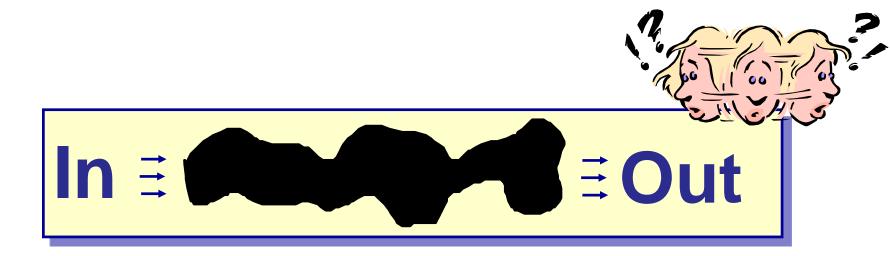
Process characterized for projects and is often reactive

Process unpredictable,

poorly controlled and

reactive

#### Managed (ex "repeatable")


- •Requirements flow in.
- •Plans are developed in accordance with policies.
- •Activities are performed in accordance with plans.
- •Measurements and reviews occur at defined points.
- •The product flows out and (usually) works

**Performed** 

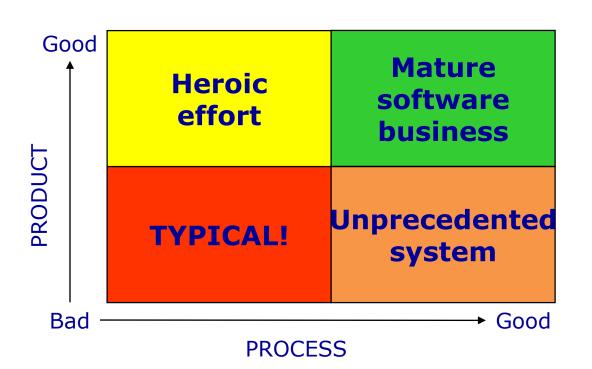
- Requirements flow in.
- A product is (sometimes) produced by some amorphous process.
- The product flows out and (we hope) works.



### ML1: Performance Is Unpredictable



Requirements flow in.

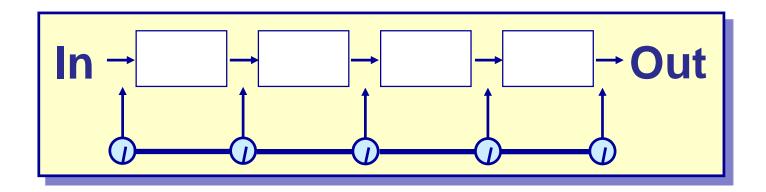

A product is (sometimes) produced by some amorphous process.

The product flows out and (we hope) works.



# REMEMBER? Corporate excellence – INTERNAL

# The corporate excellence is BASED on good internal processes




"The quality of a product is largely determined by the quality of the process that is used to develop and maintain it."

Based on TQM principles as taught by Shewhart, Juran, Deming and Humphrey.

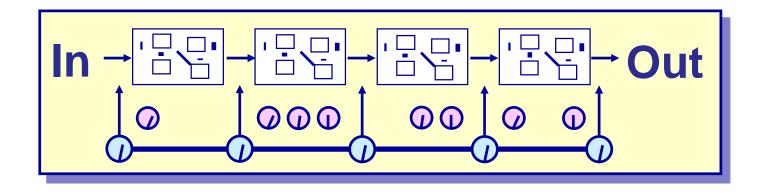


### ML2: Process Is "Managed"



Requirements flow in.

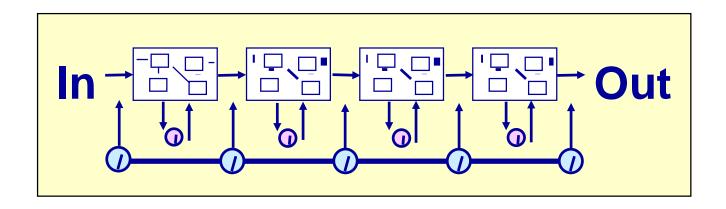
Plans are developed in accordance with policies.


Activities are performed in accordance with plans.

Measurements and reviews occur at defined points.

The product flows out and (usually) works.



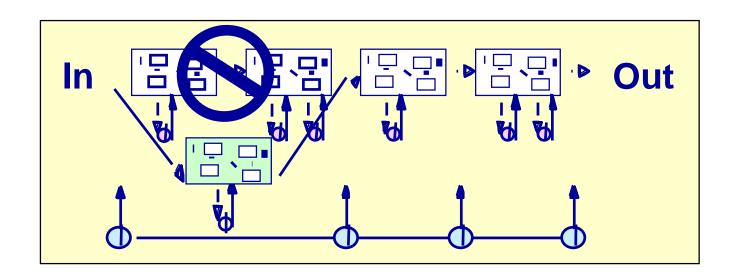

## ML3: Managed According to a Defined Process



Commonality among projects allows more uniform estimation of performance.



## ML4: Quantitatively Managed Process




The process performance is predictable and quantitatively understood

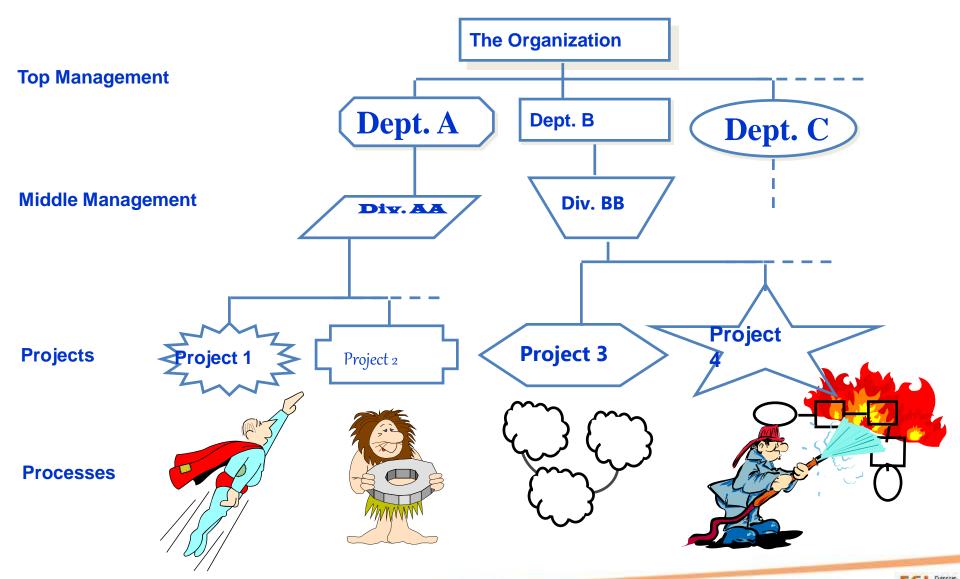
There is a quantitative-based decision making that permits to achieve the established processes objectives, the quality of the product and the quality of the service.



### ML5: Optimizing Processes



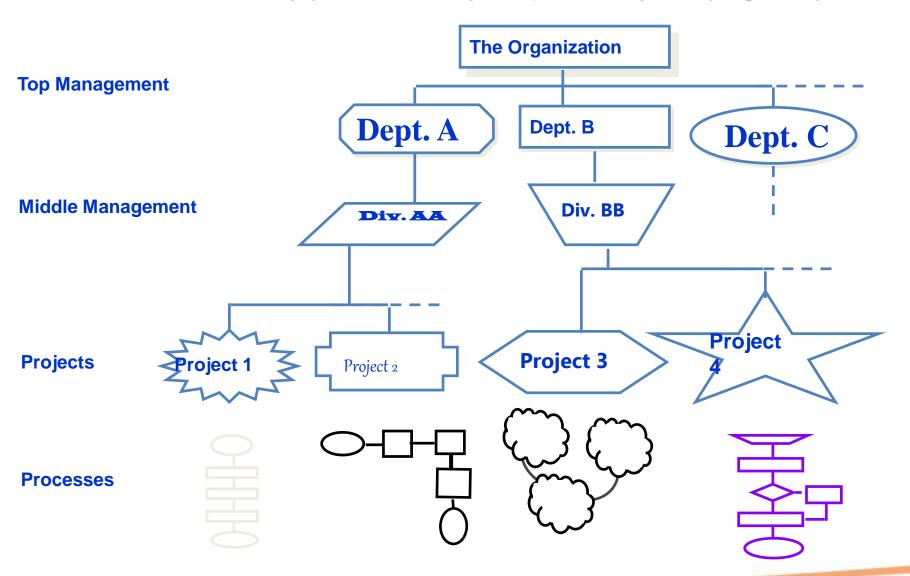
Measurable and continuous process improvement (while the process stability is managed) is integrated in the daily work


#### Measures are used to:

- Select improvements and innovations
- estimate the costs and benefits of the improvements and innovations
- Measure the current costs and benefits of the improvements and innovations.



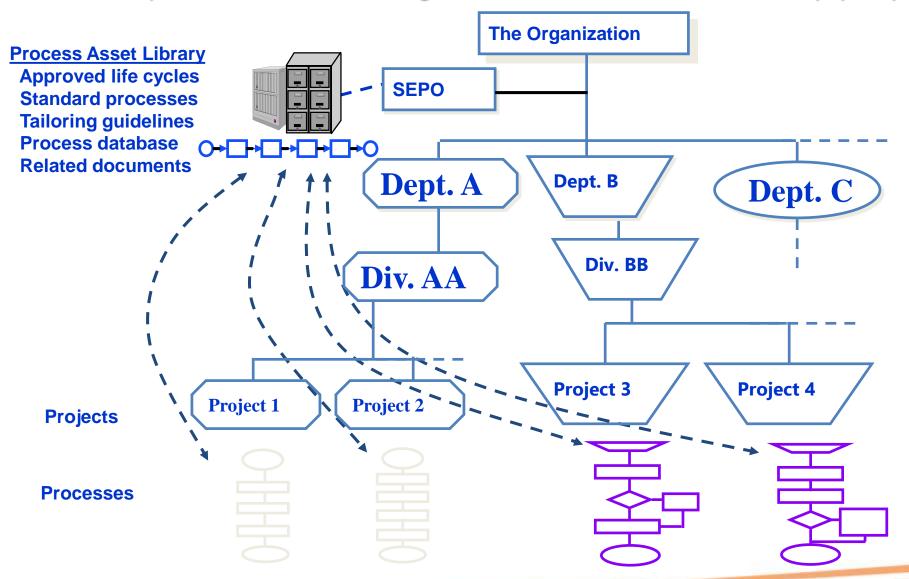
# Sample Level 1 Organization


few processes in place



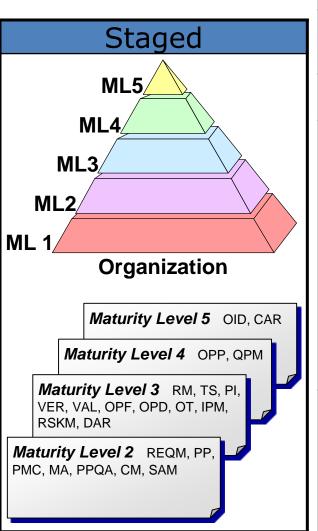


# Sample Level 2 Organization


many processes in place; but they are project-specific






# Sample Level 3 Organization

processes based on organization's Process Asset Library (PAL)





# CMMI Representations



#### **Process Areas**

Organizational Innovation & Deployment (OID)

Causal Analysis and Resolution (CAR)

Organizational Process Performance (OPP)
Quantitative Project Management (QPM)

Requirements Development (RD)

Technical Solution (TS)

Product Integration (PI)

Verification (VER)

Validation (VAL)

Organizational Process Focus (OPF)

Organizational Process Definition (OPD) + IPPD

Organizational Training (OT)

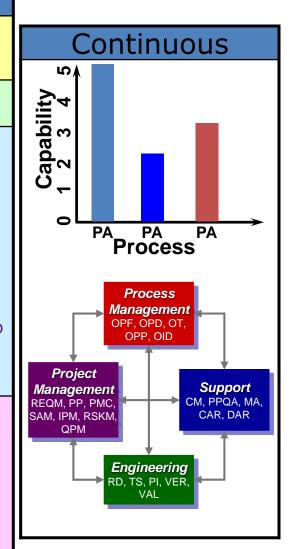
Integrated Project Management (IPM) + IPPD

Risk Management (RSKM)

Decision Analysis and Resolution (DAR)

Requirements Management (REQM)

Project Planning (PP)

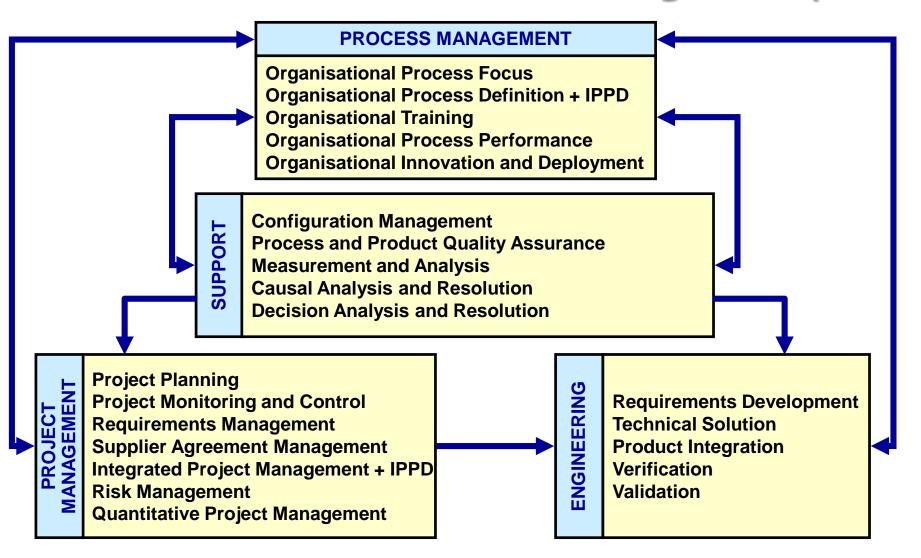

Project Monitoring and Control (PMC)

Supplier Agreement Management (SAM)

Measurement and Analysis (MA)

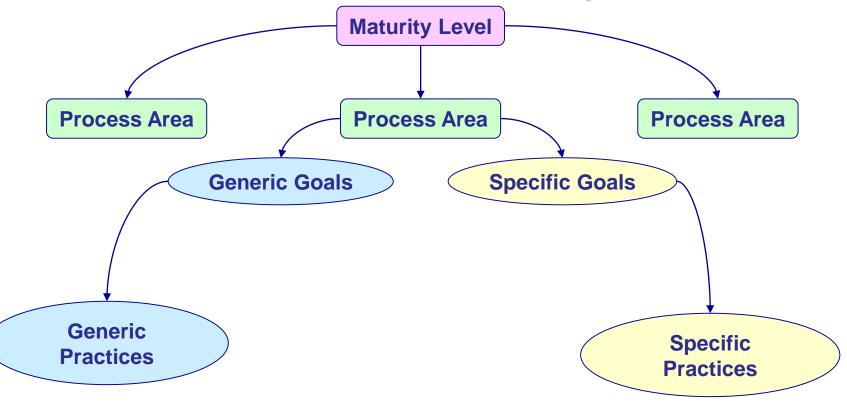
Process and Product Quality Assurance (PPQA)

Configuration Management (CM)



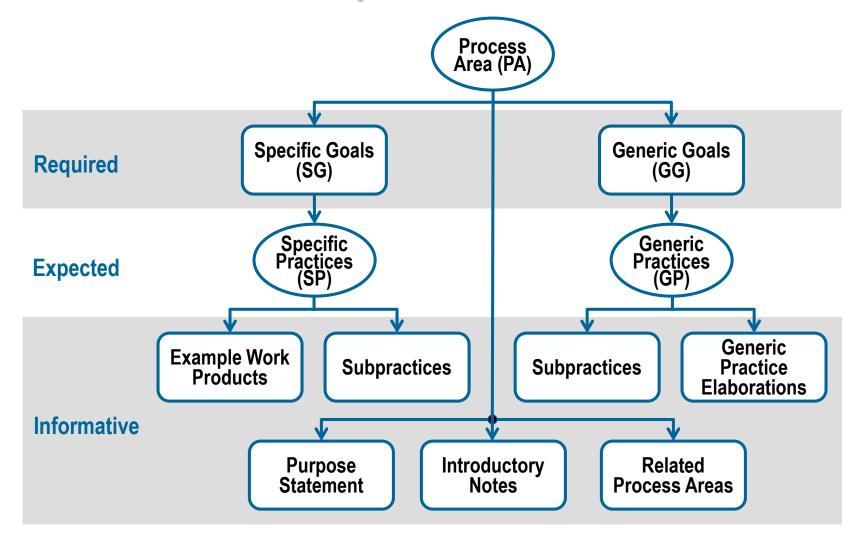



| LEVEL                       | FOCUS                                               | PROCESS AREAS                                                                                                                                                                                                                                                 | Quality      |
|-----------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 5 Optimising                | Continuous<br>Process<br>Improvement                | Organisational Innovation and Deployment Causal Analysis and Resolution                                                                                                                                                                                       | Productivity |
| 4 Quantitatively<br>Managed | Quantitative<br>Management                          | Organisational Process Performance<br>Quantitative Project Management                                                                                                                                                                                         |              |
| 3 Defined                   | Process<br>Standardisation                          | Requirements Development Technical Solution Product Integration Verification Validation Organisational Process Focus Organisational Process Definition Organisational Training Integrated Project Management Risk Management Decision Analysis and Resolution |              |
| 2 Managed                   | Basic Project<br>Management                         | Requirements Management Project Planning Project Monitoring and Control Supplier Agreement Management Measurement and Analysis Process and Product Quality Assurance Configuration Management                                                                 | Risk         |
| 1 Initial                   | No process areas – the work just gets done somehow! |                                                                                                                                                                                                                                                               | Rework       |



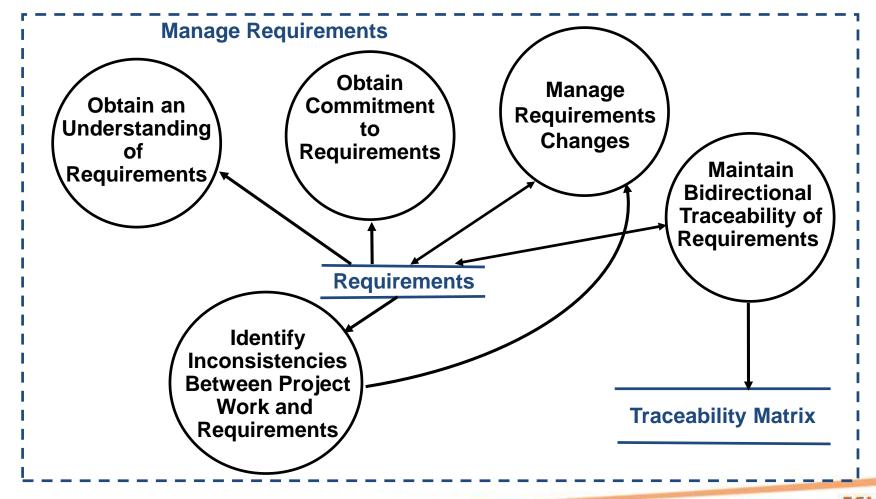

# Process areas categories (v 1.3)






Structure of the CMMI Staged Representation






# Process Area Components (or how to read the book)





#### Example: Requirements Management (REQM) Context





# Example: Requirements Development (RD, ML3) Specific Practices

#### **SG 1 Develop Customer Requirements**

- SP 1.1 Elicit Needs
- SP 1.2 Develop the Customer Requirements

#### **SG 2 Develop Product Requirements**

- SP 2.1 Establish Product and Product-Component Requirements
- SP 2.2 Allocate Product-Component Requirements
- SP 2.3 Identify Interface Requirements

#### **SG 3 Analyze and Validate Requirements**

- SP 3.1 Establish Operational Concepts and Scenarios
- SP 3.2 Establish a Definition of Required Functionality
- SP 3.3 Analyze Requirements
- SP 3.4 Analyze Requirements to Achieve Balance
- SP 3.5 Validate Requirements with Comprehensive Methods



www.esicenter.bg

## Maturity Levels Cannot Be Skipped

- A level provides a necessary foundation for effective implementation of processes at the next level.
  - Higher level processes are easily sacrificed without the discipline provided by lower levels.
  - The effect of innovation is obscured in a noisy process.
- Higher maturity level processes may be performed by organisations at lower maturity levels, with risk of not being consistently applied in a crisis.



# GG (Generic goals) = Institutionalization

#### **GG2 (ML2): Institutionalize a Managed Process**

The process is institutionalized as a managed process.

- A managed process is a performed process that is planned and executed in accordance with policy; employs skilled people having adequate resources to produce controlled outputs; involves relevant stakeholders; is monitored, controlled, and reviewed; and is evaluated for adherence to its process description.
- Management of the process is concerned with institutionalization and the achievement of specific objectives established for the process, such as cost, schedule, and quality objectives.



#### ML2 > GG2 > GPs

- GP2.1: Establish an Organizational Policy
- GP2.2: Plan the Process
- GP2.3: Provide Resources
- GP2.4: Assign Responsibility
- GP2.5: Train People
- **GP2.6:** Control Work Products
- GP2.7: Identify and Involve Relevant Stakeholders
- GP2.8: Monitor and Control the Process
- GP2.9: Objectively Evaluate Adherence
- GP2.10: Review Status with Higher Level Management



www.esicenter.ba

# Maturity levels: generic and specific practices

#### **Maturity Level 2**

- Requirements management
- Project planning
- Project monitoring and control
- Supplier agreement management
- Measurement and analysis
- Process and product quality assurance
- Configuration management



- GP 2.1 Establish organizational policy
- GP 2.2 Plan the process
- GP 2.3 Provide resources
- GP 2.4 Assign responsibility
- GP 2.5 Train people
- GP 2.6 Control Work Products (Manage configuration)
- GP 2.7 Identify and involve relevant stakeholders
- GP 2.8 Monitor and control the process
- GP 2.9 Objectively evaluate adherence
- GP 2.10 Review status with higher level management

#### **Maturity Level 3**

- Requirements development
- Technical solution
- Product integration
- Verification
- Validation
- Organizational process focus
- Organizational process definition + IPPD
- Organizational training
- Integrated project management + IPPD
- Risk management
- Decision analysis and resolution



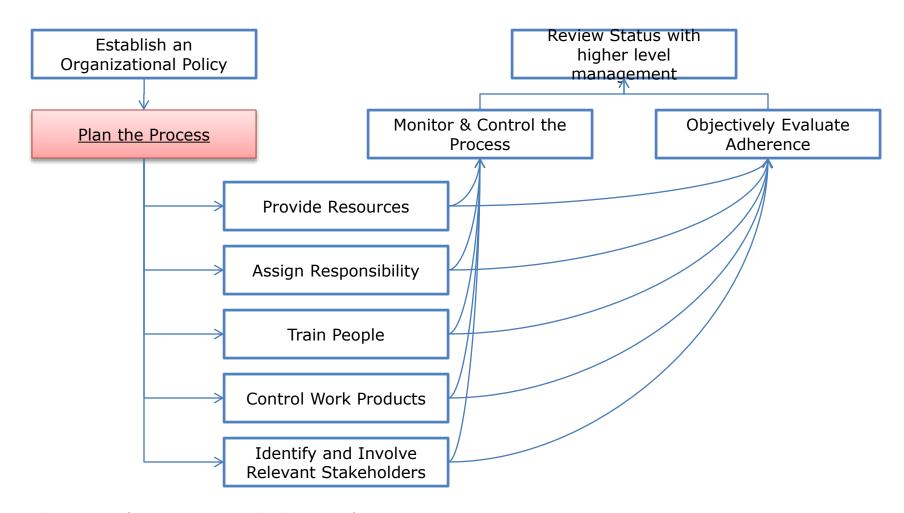


**GP 3.1 Establish a defined process** 

**GP 3.2 Collect improvement information** 



www.esicenter.bg compete by excellence


www.esicenter.bg

compete by excellence

www.esicenter.ba

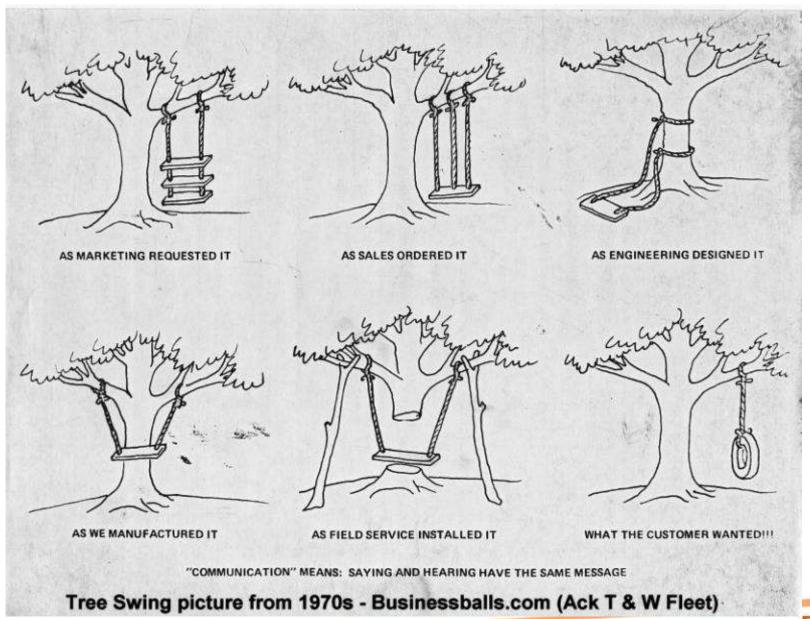
compete by

#### How PAs relate to Generic Practices?



Source: Kiril Karaatanasov, ESI Center Bulgaria




www.esicenter.bg compete by excellence www.esicenter.bg compete by excellence www.esicenter.bg compete by

## **Evolution of Process Capability**

| Level                     | Process Characteristics                                                  | Predicted Performance |
|---------------------------|--------------------------------------------------------------------------|-----------------------|
| 5 Optimising              | Process improvement is institutionalised                                 | Time/\$/              |
| Quantitatively<br>Managed | Product and process are quantitatively controlled                        | Lime/\$/              |
| 3 Defined                 | Software engineering and management processes are defined and integrated | Lime/\$/              |
| 2 Managed                 | Project management system is in place; performance is repeatable         | Time/\$/              |
| 1 Initial                 | Process is informal and unpredictable                                    | Time/\$/              |



### Remember: We want to avoid this!





Read pages 1-66 from the model

